

Total Time:	25 minutes
Marks:	22 marks
Total Marks:	40

Methods 3&4

Review Response Test 1

(Wed Mar 31st)

Resource Free

ClassPad calculators are <u>NOT</u> permitted. Formulae sheet is permitted.

Name: **ANSWERS**

1. [1, 2 & 2 = 5 marks]

Find the following indefinite integrals.

(a)
$$\int 4\sqrt{x} \, dx$$

 $= \int 4x^{1/2} \, dx^{1/2} \, dx^{1/2$

2. [4 marks]

4

Find the area bounded between the graph of y = 3x(x-4) and the x-axis.

Area =
$$\int_{4}^{0} 3x(x-4) dx$$
 (1) or $-\int_{0}^{4} 3x(x-4) dx$
(1) sketch = $\int_{4}^{0} 3x^{2} - 12x dx$
= $\left[2c^{3} - 6x^{2} + c \right]_{4}^{0}$ (1) antiderivative
= $\left(0 \right) - \left(64 - 96 \right)$
= 32 Square units (1)

3. [3 marks]

Find the equation of the tangent to the curve $y = \frac{2x-1}{x-1}$ at the point (2, 3) giving your answer in the form y = mx + c.

$$dy_{dx} = \frac{(2)(x-1) - (1)(2x-1)}{(x-1)^2} \quad (1) \text{ correctly differentiated}$$

$$= \frac{2x-2-2x+1}{(x-1)^2}$$

$$= -\frac{1}{(x-1)^2}$$
When $x = 2$, $y = 3$ and $dy_{x} = -\frac{1}{(1)^2}$

$$= -1 \quad (1)$$
So, equation of tangent is
$$y - 3 = -(x-2)$$

$$y = -x + 5 \quad (1)$$

4. [4 marks]

3

Find the x-coordinates of the points on the graph of $y = x^2(2x+3)$ where the gradient is 12. $y = 2x^3 + 3x^2$

$$dy = 6\pi^{2} + 6\pi (1)$$

$$dx = 6\pi^{2} + 6\pi (1)$$

$$Gradient = 12 \quad \text{when} \quad 6\pi^{2} + 6\pi = 12$$

$$6\pi^{2} + 6\pi - 12 = 0 \quad (1)$$

$$6(\pi^{2} + \pi - 2) = 0$$

$$6(\pi + 2)(\pi - 1) = 0$$

$$\pi = -2 \quad \text{or} \quad \pi = 1$$
(1) both required
So gradient = 12 when $\pi = -2 \text{ or } \pi = 1$

5. [6 marks]

Use calculus techniques to determine the coordinates, and their nature, of any stationary points on the curve with equation $y = 2x + \frac{18}{3}$.

$$y=2x + 18x^{-1}$$

$$x$$

$$\frac{44}{4x} = 2 - 18x^{-2}$$
(1)
For shationary points, $\frac{4x}{4x} = 0$

$$2 - \frac{18}{3x^{2}} = 0$$

$$2x^{2} - 18 = 0$$

$$2(3x^{2} - 18 = 0$$

$$2(3x^{2} - 9) = 0$$

$$2(3x^{-3})(3x+3) = 0$$

$$3(2x-3)(3x+3) = 0$$

$$3(2x-3)$$

End of Calculator-Free Section

6

Total Time:20 minutesMarks:18 marks

Methods 3&4

Review Response Test 1

(Wed Mar 31st)

Resource Assumed

ClassPad calculators <u>ARE</u> permitted. Formulae sheets are permitted.

Name:

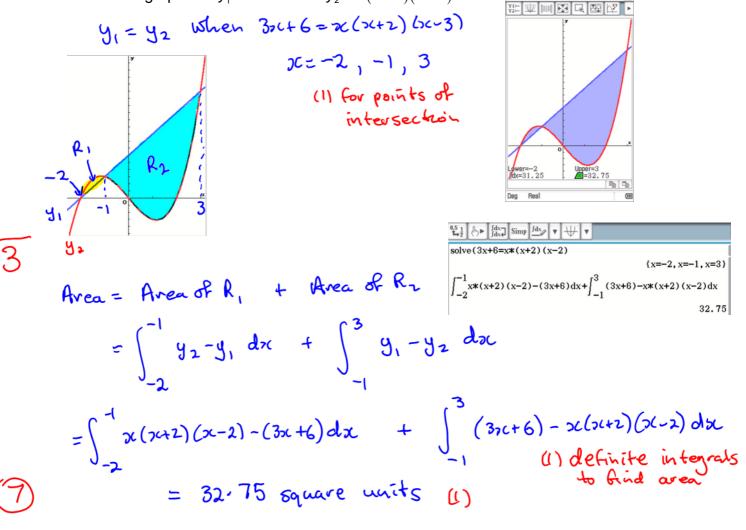
ANSWERS

6. [4 marks]

Given that $f(x) = ax^3 + bx^2 + 2x + 1$, $f'(1) = 9$ and $f''\left(\frac{1}{3}\right) = 4$, find the value of the	
constants a and b.	
$f'(x) = 3ax^2 + 2bx + 2()$	Define $f(x)=a\cdot x^3+b\cdot x^2+2\cdot x+1$
f''(x) = 6ax + 2b (1)	$\frac{d}{dx}(f(x))$
As $f'(1) = 9$, $9 = 3a + 2b + 2$	$\frac{3\cdot a\cdot x^2+2\cdot b\cdot x+2}{\frac{d^2}{dx^2}}(f(x))$
As $f''(\frac{1}{3}) = 4$, $2a + 2b = 4(1)$	$\frac{d}{dx}(f(x)) x=1$ $3 \cdot a + 2 \cdot b + 2$ $\frac{d^2}{dx} = 1$
Solving simultaneously gries a=3 and b=-1	$\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}(f(\mathbf{x})) \mathbf{x} = \frac{1}{3}$ $2 \cdot \mathbf{a} + 2 \cdot \mathbf{b}$ $\begin{cases} 3 \cdot \mathbf{a} + 2 \cdot \mathbf{b} + 2 = 9 \\ 2 \cdot \mathbf{a} + 2 \cdot \mathbf{b} = 4 \end{cases} _{\mathbf{a}, \mathbf{b}}$ $\{\mathbf{a} = 3, \mathbf{b} = -1\}$

7. [3 marks]

Showing the use of definite integrals (without absolute value), find the area enclosed between the graphs of $y_1 = 3x + 6$ and $y_2 = x(x+2)(x-2)$



8. [2, 2 & 1 = 5 marks]

(a) Find the coordinates of the points where the curve $y = \frac{3x^2}{2x+1}$ cuts the line y = 2x-1. They intersect at (-1, -3) (1) and (1, 1) (1)

(b) Find the gradient of curve
$$y = \frac{3x^2}{2x+1}$$
 at each point where it cuts the line $y = 2x-1$.
 $\frac{dy}{dx} = \frac{6x^2 + 6x}{(2x+1)^2}$ (1)
When $x = -1$, $\frac{dy}{dx} = 0$ => (wadvent at $(-1, -3)$ is zero
When $x = -1$, $\frac{dy}{dx} = \frac{4}{3}$ => (wadvent at $(1, 1)$ is $\frac{4}{3}$
(1) for correct gradient
at both points
Allow for errors from (a)

(c) Find the equation of the tangent to the curve $y = \frac{3x^2}{2x+1}$ at the point with xcoordinate of 2.

Equation of tangent at point with χ -coordinate of 2 is $\chi = \frac{36x}{25} - \frac{12}{25}$ (1)

C Edit Action Interactive	
$ \begin{array}{c} 0.5 \\ \hline \mathbf{h} \ge \end{array} \begin{array}{c} f_{dx} \\ \hline f_{dx} \end{array} \end{array} \\ Simp \begin{array}{c} f_{dx} \\ \hline \mathbf{h} \ge \end{array} \begin{array}{c} f_{dx} \\ \hline f_{dx} \end{array} \\ \hline \mathbf{h} \ge \end{array} $	
Define $f(x) = \frac{3 \cdot x^2}{2 \cdot x + 1}$	
done	
$\begin{cases} y = \frac{3 \cdot x^2}{2 \cdot x + 1} \\ y = 2x - 1 \end{cases}_{x, y}$	
{ $y=2x-1$ x, y {{x=-1, y=-3}, {x=1, y=1}}	
$\frac{d}{d\Box}(f(x))$	
$\frac{6 \cdot x^2 + 6 \cdot x}{(2 \cdot x + 1)^2}$	
$\frac{d}{d\Box}(f(x)) x=-1$	
0	
$\frac{d}{d\Box}(f(x)) x=1$	
$\frac{4}{3}$	
tanLine(f(x), x, 2) 36·x 12	
$\frac{36 \cdot x}{25} - \frac{12}{25}$	

9. [6 marks]

6

The owner of a garden centre wishes to fence a rectangular area of 360 m². She wishes to fence three sides with fencing that costs \$5/m and the fourth side with fencing costing \$11/m.

Show the use of calculus to find the dimensions of the rectangular area that will minimise her fencing costs.

